Chromatography

The separation process involving the interaction of one or more solutes and two phases.

Mobile phase

A gas or liquid that passes through a 'column'

Stationary phase

A solid or liquid which does not move.

Plate theory		
1469.1	40h Y40h Y40h Y40h Y40h Y40h X40h	
Raising		
Vs	General increase in retention	
V _M	General decrease in retention	
u	Increases speed of separation.	
	tcan be altered by changing column diameter gth for a specific column packing.	
u can be a	altered by changing the flowrate.	
All terms of prepare	can be found by knowing how the column was ed.	

Resolution

Knowing how well a column can retain a component is nice but we need to deal with multiple eluents or why bother.

Resolution, R_s

A measure of how completely two neighboring peaks are separated from each other.

ResolutionSince
$$v = V_m (1 - k)$$
resolution in terms of k is: $R_s = \frac{N}{2} \frac{k_2 - k_1}{2 + k_2 + k_1}$ Remember that the relative volatility, α , is $\alpha = k_2 / k_1$

Approximate resolution equationThe exact resolution equation is:
$$R_s = \frac{N}{4} \ln(1 + \frac{k_2 - k_1}{1 + k_1})$$
 $k_2 \cong k_1$, when $\begin{array}{c} k_2 - k_1 \\ 1 + k_1 \end{array}$ is small compared to 1.and $\ln(1 + x) \cong x$ For a small x, $R_s = \frac{N}{4} \begin{pmatrix} k_2 - k_1 \\ 1 + k_1 \end{pmatrix}$

2

	E	xample		
	ermine the k, N a llowing analysis	IND HETP 1	for toluene in th	ne
	Solute	t _R , min	W _{1/2} , min	L
	air benzene	1.5 7.45	1.05	
	toluene	10.6	1.45	
	Column length Flow rate	= 10 me = 30 ml		
	isothermal con	ditions		

van Deemter terms

You don't need to calculate H for each column/eluent combination to be able to use this relationship.

An understanding of the effects of each term will help you design/select appropriate columns and optimum flows.

Optimum velocit	, /
The best velocity is a function of the deemter equation and practical	conditions.
You need to have a useable and Also, since the effects of B are greater than C,	alysis time. u _{opt}
it is best to set the flow B/L a little on the high side H	Cu
in case it changes slightly during the analysis.	u u

	ion volum	nes	2
If the flowrate (F_c) is c		nd known then:	
Retention volume	= V _R	= t _R F _c	
Adjusted V _R	= V' _R	= t' _R F _c	
Hold up volume	= V _m	= t _M F _c	NAX N
CE MCE MCEMC	CACO	MCCMCCMC	5

Retention relationshipsTo determine an unknown carbon number:
$$x = n_1 + (n_2 - n_1) \begin{bmatrix} nV_x - lnV_{n1} \\ lnV_{n2} - lnV_{n1} \end{bmatrix}$$
 $n_2 > x > n_1$ This can only be used for straight chain
compounds and the unknown must fall
between n_1 and n_2 .

n 140n 140n 14		405.3405.3405
Method	Time, min	Precision, %
Planimeter	15	4.1
Triangulation	10	2.5 - 4
Cut & weigh	20	1.7
Int. Recorder	5	1.3
Integrator	N/A	0.44
Computer	N/A	0.44

Quantitative interpretation

OK, now you have all of your peak areas.

Let's assume you knew what you were doing and all the areas were measured properly.

Big deal!

A relationship between concentration and area must be established or we're just spinning our wheels.

Internal standard method

Overall, the most reliable approach.

Basis

A known substance is added at a constant concentration to all standards and samples - internal standard.

Since the internal standard is always present at a constant amount, it can be used to account for variations such as injection volume during an analysis.

	Internal s	tandard metho	d
Pr an Ma	nd 12.00 mg of IS ake several 2 μl i	d that contains 11 STD. injections and cal for each compone	culate an
	Component X ISTD	Average area 635 1009	

Now	, inject yc	our unkn	own.	
	Area _x	=	990	
	Area	, =	1031	
C _x	= (1	009/103	1) (990/635)	x 11.3 mg
	= 17.24	mg X ir	n the unknow	n.